11 research outputs found

    In utero and Postnatal Oxycodone Exposure: Implications for Intergenerational Effects

    Get PDF
    Prescription opioid abuse during and after pregnancy is a rising public health concern. Adding a layer of complexity is the role of heredity in the overall development of these exposed offspring. The present work uses a preclinical rat model mimicking oxycodone (oxy) exposure in utero (IUO) and postnatally (PNO) to investigate comparative and intergenerational effects in the two different exposure groups. To understand the direct effects of IUO and PNO exposure on the F1 generation, we employed a systems biology approach encompassing proton magnetic resonance spectroscopy (1H-MRS), electrophysiology RNA-sequencing, and pain assessment to elucidate molecular and behavioral changes in these offspring. 1H-MRS studies revealed significant changes in brain metabolites that were corroborated with changes in synaptic currents. RNA-sequencing of the prefrontal cortex further revealed alterations in the expression of key genes associated with synaptic transmission, neurodevelopment, mood disorders, and addiction. Von Frey testing showed lower pain thresholds in both oxy-exposed groups. Further, because addictive drugs produce significant and persistent changes in the synapse, we investigated the synaptic vesicle (SV) contents of the PNO and IUO groups. To that end, we found that the expression levels of key SV proteins associated with functional pathways and neurological disease were altered in oxy-exposed groups. While our earlier studies characterized the effects PNO and IUO exposure have on the F1 generation, we next sought to compare the overall development between F1 offspring and their progeny, the F2 generation. We observed significant differences in phenotypic attributes of both generations in each treatment group, and RNA-sequencing of the nucleus accumbens revealed alterations in the expression of key synaptic genes in both generations. Post-validation of these genes using RT-PCR highlighted the differential expression of several neuropeptides associated with the hypocretin system, a system recently implicated in addiction. Further, behavior studies revealed anxiety-like behaviors and social deficits in both treatment groups that persisted into the F2 generation. Collectively, our studies reveal a new line of investigation on the potential risks associated with oxy use during and after pregnancy, specifically the disruption of neurodevelopment and the intergenerational impact on behavior

    Integrated Systems Analysis of Mixed Neuroglial Cultures Proteome Post Oxycodone Exposure

    Get PDF
    Opioid abuse has become a major public health crisis that affects millions of individuals across the globe. This widespread abuse of prescription opioids and dramatic increase in the availability of illicit opioids have created what is known as the opioid epidemic. Pregnant women are a particularly vulnerable group since they are prescribed for opioids such as morphine, buprenorphine, and methadone, all of which have been shown to cross the placenta and potentially impact the developing fetus. Limited information exists regarding the effect of oxycodone (oxy) on synaptic alterations. To fill this knowledge gap, we employed an integrated system approach to identify proteomic signatures and pathways impacted on mixed neuroglial cultures treated with oxy for 24 h. Differentially expressed proteins were mapped onto global canonical pathways using ingenuity pathway analysis (IPA), identifying enriched pathways associated with ephrin signaling, semaphorin signaling, synaptic long-term depression, endocannabinoid signaling, and opioid signaling. Further analysis by ClueGO identified that the dominant category of differentially expressed protein functions was associated with GDP binding. Since opioid receptors are G-protein coupled receptors (GPCRs), these data indicate that oxy exposure perturbs key pathways associated with synaptic function

    Role of Extracellular Vesicles in Substance Abuse and HIV-Related Neurological Pathologies

    Get PDF
    Extracellular vesicles (EVs) are a broad, heterogeneous class of membranous lipid-bilayer vesicles that facilitate intercellular communication throughout the body. As important carriers of various types of cargo, including proteins, lipids, DNA fragments, and a variety of small noncoding RNAs, including miRNAs, mRNAs, and siRNAs, EVs may play an important role in the development of addiction and other neurological pathologies, particularly those related to HIV. In this review, we summarize the findings of EV studies in the context of methamphetamine (METH), cocaine, nicotine, opioid, and alcohol use disorders, highlighting important EV cargoes that may contribute to addiction. Additionally, as HIV and substance abuse are often comorbid, we discuss the potential role of EVs in the intersection of substance abuse and HIV. Taken together, the studies presented in this comprehensive review shed light on the potential role of EVs in the exacerbation of substance use and HIV. As a subject of growing interest, EVs may continue to provide information about mechanisms and pathogenesis in substance use disorders and CNS pathologies, perhaps allowing for exploration into potential therapeutic options

    Twenty year fitness trends in young adults and incidence of prediabetes and diabetes: the CARDIA study

    Get PDF
    The prospective association between cardiorespiratory fitness (CRF) measured in young adulthood and middle age on development of prediabetes, defined as impaired fasting glucose and/or impaired glucose tolerance, or diabetes by middle age remains unknown. We hypothesised that higher fitness levels would be associated with reduced risk for developing incident prediabetes/diabetes by middle age

    A Holistic Systems Approach to Characterize the Impact of Pre- and Post-natal Oxycodone Exposure on Neurodevelopment and Behavior

    Get PDF
    Background: Increased risk of oxycodone (oxy) dependency during pregnancy has been associated with altered behaviors and cognitive deficits in exposed offspring. However, a significant knowledge gap remains regarding the effect of in utero and postnatal exposure on neurodevelopment and subsequent behavioral outcomes. Methods: Using a preclinical rodent model that mimics oxy exposure in utero (IUO) and postnatally (PNO), we employed an integrative holistic systems biology approach encompassing proton magnetic resonance spectroscopy (1H-MRS), electrophysiology, RNA-sequencing, and Von Frey pain testing to elucidate molecular and behavioral changes in the exposed offspring during early neurodevelopment as well as adulthood. Results: 1H-MRS studies revealed significant changes in key brain metabolites in the exposed offspring that were corroborated with changes in synaptic currents. Transcriptomic analysis employing RNA-sequencing identified alterations in the expression of pivotal genes associated with synaptic transmission, neurodevelopment, mood disorders, and addiction in the treatment groups. Furthermore, Von Frey analysis revealed lower pain thresholds in both exposed groups. Conclusions: Given the increased use of opiates, understanding the persistent developmental effects of these drugs on children will delineate potential risks associated with opiate use beyond the direct effects in pregnant women

    Generational Effects of Opioid Exposure

    No full text
    The inheritance of substance abuse, including opioid abuse, may be influenced by genetic and non-genetic factors related to the environment, such as stress and socioeconomic status. These non-genetic influences on the heritability of a trait can be attributed to epigenetics. Epigenetic inheritance can result from modifications passed down from the mother, father, or both, resulting in either maternal, paternal, or parental epigenetic inheritance, respectively. These epigenetic modifications can be passed to the offspring to result in multigenerational, intergenerational, or transgenerational inheritance. Human and animal models of opioid exposure have shown generational effects that result in molecular, developmental, and behavioral alterations in future generations

    Mesenchymal Stem Cell-Derived Extracellular Vesicles: Challenges in Clinical Applications

    No full text
    Stem cell therapy has garnered much attention and application in the past decades for the treatment of diseases and injuries. Mesenchymal stem cells (MSCs) are studied most extensively for their therapeutic roles, which appear to be derived from their paracrine activity. Recent studies suggest a critical therapeutic role for extracellular vesicles (EV) secreted by MSCs. EV are nano-sized membrane-bound vesicles that shuttle important biomolecules between cells to maintain physiological homeostasis. Studies show that EV from MSCs (MSC-EV) have regenerative and anti-inflammatory properties. The use of MSC-EV, as an alternative to MSCs, confers several advantages, such as higher safety profile, lower immunogenicity, and the ability to cross biological barriers, and avoids complications that arise from stem cell-induced ectopic tumor formation, entrapment in lung microvasculature, and immune rejection. These advantages and the growing body of evidence suggesting that MSC-EV display therapeutic roles contribute to the strong rationale for developing EV as an alternative therapeutic option. Despite the success in preclinical studies, use of MSC-EV in clinical settings will require careful consideration; specifically, several critical issues such as (i) production methods, (ii) quantification and characterization, (iii) pharmacokinetics, targeting and transfer to the target sites, and (iv) safety profile assessments need to be resolved. Keeping these issues in mind, the aim of this mini-review is to shed light on the challenges faced in MSC-EV research in translating successful preclinical studies to clinical platforms
    corecore